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We investigate nanoelectromechanical systems near mechanical instabilities. We show that, quite generally,
the interaction between the electronic and the vibronic degrees of freedom can be accounted for essentially
exactly when the instability is continuous. We apply our general framework to the Euler buckling instability
and find that the interaction between electronic and vibronic degrees of freedom qualitatively affects the
mechanical instability, turning it into a discontinuous one in close analogy with tricritical points in the Landau
theory of phase transitions.
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.
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FIG. 1. !Color online" Sketch of a nanobeam !a" in the flat state
and !b" the buckled state with two equivalent metastable positions
of the rod !solid and dashed lines". An equivalent circuit of the
embedded SET is shown in !c".
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ging the length of the insulating tether alters the coupling of the
ion to the electrodes, enabling the fabrication of devices that
exhibit ei ther single-electron phenomena, such as Coulomb
blockade, or the Kondo effect.

The molecules that we have investigated are depicted in Fig. 1a.
They are coordination complexes in which one Co ion is bonded
within an approximately octahedral environment to two terpyridi-
nyl linker molecules with thiol end groups, which confer high
adsorbability onto gold surfaces. The two molecules ([Co(tpy-
(C H 2)5-S H )2]2á and [Co(tpy-S H )2]2á) differ by a five-carbon
alkyl chain within the linker molecules (see Methods for details).
These molecules were selected because it is known from electro-
chemical studies that the charge state of the Co ion can be changed
from 2á to 3á at low energy. A cyc lic voltammogram11 for
[Co(tpy-S H )2]2á adsorbed on a gold electrode in an acetonitrile/
supporting electrolyte solution is shown in Fig. 1b, indicating that a
positive voltage V s < á 0.25 V (measured against an Ag/AgC l
reference) applied to the solution removes one electron from the
ion. Similar results were obtained for [Co(tpy-(C H 2)5-S H )2]2á

(ref. 12).
Preparation of the transistors (schematically shown in Fig. 1c)

begins with the thermal growth of a 30-nm Si O2 insulating layer on
top of a degenerately doped Si substrate used as a back gate.
Continuous gold wires with widths of less than 200 nm, lengths of
200–400 nm and thicknesses of 10–15 nm are fabricated on the Si O 2
layer by electron beam lithography. The wires are cleaned with
acetone, methylene chloride and oxygen plasma, and placed in a
dilute solution of the molecules in acetonitrile for a day or more in
order to form a self-assembled monolayer on the Au electrodes. The

wires coated with molecules are then broken by electromigration, by
ramping to large voltages (typically over 0.5 V ) at cryogenic tem-
peratures while monitoring the current until only a tunnelling
signal is present13. This produces a gap about 1–2-nm-wide, across
which a molecule is often found. Electrical characteristics of the
molecule are determined by acquiring current versus bias voltage
(I–V) curves while changing the gate voltage ( V g).

First we discuss the results obtained for the longer molecule,
[Co(tpy-(C H 2)5-S H )2]. The measurements were performed in a
dilution refrigerator with an electron temperature of less than
100 mK . In about 10% of 400 broken wires we see I–V curves as
shown in Fig. 1c. The current is strongly suppressed up to some
threshold voltage that depends on V g, and then it increases in steps.
In F ig. 2 we show higher-resolution colour-scale plots of the
differential conductance › I/ › V at low bias, as a function of V and
V g for three different devices. The darkest areas on the left and right
of the plots indicate the regions of no current. The bright lines
located outside these regions correspond to a fine structure of
current steps visible near the voltage thresholds.

This behaviour is the signature of a single-electron transistor14, a
device containing a small island which is attached to electrodes by
tunnel barriers and whose charge state can be tuned using a gate
voltage. In this case the island is a single Co ion. For most values of
V g, the charge state of the ion is stable at low V (dark regions). An
electron does not have sufficient energy to tunnel onto the island
and therefore current is blocked (Coulomb blockade). The bright
lines that define the boundaries of the Coulomb-blockade regions
illustrate the tunnelling thresholds for transitions between charge
states. Conductance in the vicinity of V à 0 is allowed at a value of

Figure 2 Colour-scale plots of differential conductance ( › I/ › V ) as a function of the bias
voltage (V ) and the gate voltage (V g ) for three different [Co(tpy-(CH2)5-SH)2] single-
electron transistors at zero magnetic field. Black represents zero conductance and white
the maximum conductance. The maxima of the scales are 5 nS in a, 10 nS in b, and
500 nS in c. The › I/ › V values were acquired by numerically differentiating individual I –V
curves.
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Figure 1 The molecules used in this study and their electronic properties. a, Structure of
[Co(tpy-(CH2)5-SH)2]2á (where tpy-(CH2)5-SH is 4

0 -(5-mercaptopentyl)-2,2 0 :6 0 ,2 00 -
terpyridinyl) and [Co(tpy-SH)2]2á (where tpy-SH is 4

0 -(mercapto)-2,2 0 :6 0 ,2 00 -terpyridinyl).
The scale bars show the lengths of the molecules as calculated by energy minimization.
b, Cyclic voltammogram of [Co(tpy-SH)2]2á in 0.1 M tetra-n-butylammonium

hexafluorophosphate/acetonitrile showing the Co2á/Co3á redox peak. c, I –V curves of a
[Co(tpy-(CH2)5-SH)2]2á single-electron transistor at different gate voltages (V g ) from

2 0.4 V (red) to 2 1.0 V (black) with DV g < 2 0.15 V. Upper inset, a topographic atomic
force microscope image of the electrodes with a gap (scale bar, 100 nm). Lower inset, a
schematic diagram of the device.
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Figure 1.9 (a) Schematic representation of the potential surfaces
of azobenzene derivatives as a function of the reaction coordinate.
The barrier height separating the two minima is denoted by Vb,
and ω is the attempt frequency (considered to be the same in all
wells for simplicity). (b) Quantum yield Y as a function of the
inverse temperature β for different ratios of the electronic tunneling
rate Γsub and the vibrational frequency ω. Solid lines: numerical
result. Dashed lines: quantum yield (1.40) for T < Tc. Dotted
lines: quantum yield (1.41) for T > Tc.

charge carriers. The molecule spends most of the time in the neutral state, i.e., when-
ever an electron tunnels from the tip onto the molecule, it continues into the substrate
almost instantaneously, while the average waiting time until the next tunneling event
from the tip is long.

The basic mechanism of current-induced switching now follows from the Franck–
Condon principle. The switching process is initiated by a first transition from one of
the two conformational states into the charged state. After the molecule evolves on
the potential surface of the charged state, it eventually undergoes a second tunneling
transition from the charged state into a conformational state, cf. Fig. 1.9a. The switching
probability strongly depends on the ratio of the vibrational frequency in the charged
state, ω, and Γ = Γtip + Γsub. For ω � Γ the molecule oscillates many times between
the two tunneling events, and the probabilities for transitions from the charged state
into the two conformational states of the neutral molecule are of the same order. In
contrast, for the regime ω � Γ relevant for STM experiments, the ionic state survives
for much less than a full vibration period. Thus, the molecule most often returns to its
original conformation, and conformational switching occurs rarely, with a probability
of the order of 10−10 [20, 21, 23].

In the latter regime, extending the model of Sec. 1.2 to the potential energy surfaces
of Fig. 1.9a, one can compute the quantum yield Y which is the probability for a single
electron tunneling through the system to switch the molecule [12]. This quantity is
the conditional probability for the molecule to go, say, into the trans state in the first
tunneling event after excitation from the cis state into the charged state.

Quantum yield � 10−10

Γtip � ω � Γsub

[F. Elste, GW, C. Timm, F. von Oppen, Appl. Phys. A 93, 345 (2008)]
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We investigate nanoelectromechanical systems near mechanical instabilities. We show that, quite generally,
the interaction between the electronic and the vibronic degrees of freedom can be accounted for essentially
exactly when the instability is continuous. We apply our general framework to the Euler buckling instability
and find that the interaction between electronic and vibronic degrees of freedom qualitatively affects the
mechanical instability, turning it into a discontinuous one in close analogy with tricritical points in the Landau
theory of phase transitions.
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.

F > Fc

F < Fc(a)

(b)

(c)

C, R C, R

−V/2

Cg

VgV/2

FIG. 1. !Color online" Sketch of a nanobeam !a" in the flat state
and !b" the buckled state with two equivalent metastable positions
of the rod !solid and dashed lines". An equivalent circuit of the
embedded SET is shown in !c".
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➡  Elastic rod buckles when compression exceeds critical force Fc
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Nanomechanical instabilities:

supports as they become undercut by the plasma etching.

Beams with different lengths and widths showed similar ini-

tial and postrelease buckling behavior. To minimize effects

related to the supports we only consider the initial displace-

ments yi of the beams. The variation of yi with d for fixed

length L!7.5 !m is shown in Fig. 2"a#, and the variation
with L for fixed width d!60 nm is shown in Fig. 2"b#. Also,
we find that the buckling direction is random; the number of

beams which buckled ‘‘left’’ was approximately equal to the

number that buckled ‘‘right’’ independent of dimensions.

To compare the observed displacements with theory we

consider the problem of determining the equilibrium post-

buckling eigenfunctions and eigenvalues of a beam, which

has a rich history dating back to early work by Euler and

Lagrange.13 For a strained elastic thin-walled structure the

potential energy functional has the form10,14

V$y"x #%!
1

2
F&2! "y!#2 dx"

1

2
F'! "y"#2 dx

"
1

8

F
L

" ! "y"#2dx # 2, "1#

with the linear modulus F!Qwd where Q is Young’s

Modulus, & is the radius of gyration, ' is the strain, and y(x)
is the eigenfunction "primes denote differentiation y"
(dy(x)/dx). In Eq. "1# the first term is the energy of bend-

ing, the second term is the energy due to tensile ('#0) or
compressive ('$0) strain, and the last term represents the

increase in tension due to the stretching effect of the trans-

verse displacement and acts to stabilize the system. The ex-

act form of the eigenfunctions and eigenvalues are deter-

mined by the boundary conditions. For clamped boundary

conditions, y(0)!0!y(L) and y"(0)!0!y"(L), the fun-
damental eigenfunction is

y"x #!
1

2
ymid$1%cos" 2)

x

L
# % , "2#

where the fundamental wave number 2)/L!('/&2)1/2. In
Fig. 1 we show the comparison between the measured

boundary curves and the eigenfunction for clamped bound-

ary conditions given by Eq. "2#. We find good agreement
between the measured eigenfunctions and Eq. "2# for all of
the buckled beams studied, though seemingly small devia-

tions from clamped boundary conditions may be important

as discussed below.

We have compared the measured initial displacement yi
for the different width and length beams with the model

given in Eq. "1#. Equation "1# describes the dependence of
the initial displacement on width and length in Figs. 2"a# and
2"b# for (d/L)&0.01, but cannot account for the smaller
displacements for which (d/L)'0.01. These smaller dis-
placements can be attributed to asymmetries due to slight

deviation from ideal clamped boundary conditions and/or

fabrication artifacts, such as slight misalignment of the sup-

ports during lithography or small variations in the plasma

etching rate across the sample. Here we assume that, what-

ever the origin of the asymmetry, the effect is always to

induce a nonzero displacement prior to the Euler buckling

instability. We assume the displacement due to asymmetry is

characterized by the function y*( 1
2*L+1%cos$2) (x/L)%,,

where * is a dimensionless measure of the asymmetry.15 This
requires Eq. "1# to be generalized such that the bending mo-

FIG. 1. "Color# Extracted boundary curves from the beam shown in the inset
using image processing. The axes are the scaled distance between the sup-

ports and the scaled transverse displacement. The blue curve is the ‘‘upper’’

boundary and the red curve the ‘‘lower’’ boundary of the beam in the inset,

and the black curve is the eigenfunction for clampled boundary conditions

given by Eq. "2#. Inset: Scanning electron micrograph of a free-standing
SiO2 buckled nanomechanical beam with the supports on the left and right

fixed to the substrate. The length L and width d are labeled on the micro-

graph. Scale bar is 1 !m.

FIG. 2. "a# Dependence of the initial buckling displacement y i on the width
d for fixed length L!7.5 !m. Inset: Midpoint buckling displacement ymid
as a function of the etching time for the beam with L!7.5 ! and d!60 nm.
yi is the initial buckling displacement. For this beam 85 seconds of plasma

etching time was required for release resulting in y i-200 nm. "b# Depen-
dence of the initial buckling disbuckling displacement yi on the length L for

fixed width d!60 nm. In both "a# and "b# the theoretical curve with a
non-zero asymmetry parameter "solid curve: *.0) is compared with the
theoretical curve assuming no asymmetry "dashed curve: *!0). The solid
curve is a fit to the data with '!%0.46%(0.08% and *!(1.1(0.8)
)10%3 as fitting parameters.

710 Appl. Phys. Lett., Vol. 82, No. 5, 3 February 2003 S. M. Carr and M. N. Wybourne

Downloaded 26 May 2009 to 160.45.33.235. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

caused a time-dependent force and dynamic
deflections (the forces are described in Eq. 2).
Adjustment of the angular frequency ! "
2#$ allowed the nanotubes to be resonantly
excited, which caused large-amplitude de-
flections for relatively small excitation volt-
ages Vd. For example, for the vibrations in
Fig. 2B, Vd " 100 mV and the frequency $1

" 530 kHz. The shape of the dynamically
deflected nanotube (which is independent of
the details of the force distribution on the
nanotube) corresponds to the shape predicted
for a resonantly excited cantilevered beam.
The frequencies are found from the following

equation (29)

$j !
%j

2

8#

1
L2 !&D2 " Di

2' !Eb

(
(1)

where D is the outer diameter, Di is the inner
diameter, Eb is the elastic modulus, ( is the
density, and %j is a constant for the j th har-
monic: %1 " 1.875, %2 " 4.694. This equa-
tion results from the Bernoulli-Euler analysis
of cantilevered elastic beams (29). If the
beam bends by elongation of the outer arc
and a compression of the inner arc of the
bend, then Eb can be identified with the
Young’s modulus E of the material (29).
However, to retain generality, we will call
this constant the effective bending modulus
Eb, for the reasons given below.

Higher modes can be excited, such as the
second harmonic of the same nanotube (Fig.
2C). The frequency of this vibration is $2 "
3.01 MHz " 5.68 $1. For a uniform cantile-
vered beam, the theoretical ratio $2/$1 " 6.2
(29). The position of the node in the $2 mode
is found at 0.76 L, which is very close to the
theoretical value of 0.8 L (29). Although a
detailed analysis of the sequence of harmon-
ics combined with an analysis of the deflect-
ed contours can provide detailed information

on individual nanotubes, we have chosen to
concentrate on trends in the elastic moduli
with nanotube diameter. The resonant fre-
quencies may drift very slightly with time
(either positively or negatively). However,
we have not found evidence for irreversible
changes to the nanotubes. Even when a large-
amplitude resonant vibration was applied to a
nanotube for 30 min ()109 cycles), the fre-
quency drift was less than 1%.

Figure 3 shows the Eb for several MWNTs
determined from measurements of $1, D, and L
(30). Several values from other sources are
superimposed. It is clear that Eb is very large
(*1 TPa) for D + 10 nm, and that Eb drops
dramatically to lower values (Eb * 100 GPa)
for tubes of larger diameter. For small D, our
measurements correspond well with those
found by others, but for larger D our values are
significantly lower than those found in (16).

Such a great reduction in Eb must be related
to the emergence of another bending mode of
the nanotube. Most likely, this mode corre-
sponds to the wavelike distortion or ripple on
the inner arc of the bent nanotube that is ob-
served for slightly bent, relatively thick nano-
tubes (11, 20). A particularly clear example is
shown in Fig. 3D (31). The ripple structure in
the tube 31 nm in diameter caused the nanotube
to bend uniformly, with a radius of curvature
from *400 nm, which is only a factor of 3
smaller than typical curvatures in the resonant
experiments described here. The amplitude of
the ripple increased uniformly from essentially
0 for layers near the center of the nanotube to
about 2 to 3 nm for the outer layers. There were
no discontinuities in consecutive interlayer
spacings nor was there evidence of defects.
Ripple amplitude increased continuously and
smoothty with decreasing nanotube curvature.
In contrast, a thin slightly bent nanotube (8 nm
in diameter) did not present ripples for a 300-
nm radius of curvature, but the same tube did
show evidence for buckling (32) and damage
on sections where the radius of curvature was
decreased to 24 nm (11, 19).

The appearance of the ripples is most likely
related to the consequent reduced compression
of the carbon bonds of the inner arc of the bend
as compared with uniform bending. This pro-
cess causes a large reduction in the strain ener-
gy associated with the Young’s modulus paral-
lel to the basal plane of graphite (for bulk
graphite, Ea " 1.06 TPa). The rippling mode is
likely to be energetically favorable (at least for
large diameter tubes), because the other four
elastic moduli for bulk graphite are all much
smaller than Ea (33). However, a detailed the-
oretical analysis will be required to explain the
crossover from the uniform (compression/elon-
gation) mode to the rippling mode.

Defects that cross-link adjacent nanotube
layers could prevent this rippling effect and
thereby cause the nanotubes to retain their
large Eb. This mechanism could then explain

Fig. 1. Electron micrographs of the electrome-
chanical deflections of a carbon nanotube. (A)
Uncharged nanotube (Vs" 0). (B) Charged nano-
tube (Vs " 20 V). Here an electrical potential
difference was applied between the nanotube
(which was connected to a nanotube fiber) and a
counterelectrode (not shown). The charge in-
duced on the nanotube interacted with the elec-
tric fields between the nanotube and the coun-
terelectrode and resulted in an attractive force,
which caused the nanotube to bend. An analysis
of the shape of the bent nanotube showed that
essentially all of the induced charge was at the tip
of the nanotube. The bending process was revers-
ible even for extreme bends (with radii of curva-
ture +100 nm), which indicates the large elastic
strength of the nanotubes. (C) Measured static
deflections as a function of Vs for two nano-
tubes (solid circles: D " 18 nm, L " 4.6 ,m;
open circles: D " 41 nm, L " 1.5 ,m), showing
the quadratic dependence on Vs. The slight
voltage offsets of the minima of the fitted
parabola are attributed to work function effects
(see also Fig. 4).

Fig. 2.Nanotube response to resonant alternating
applied potentials. (A) In the absence of a poten-
tial, the nanotube tip (L" 6.25,m,D" 14.5 nm)
vibrated slightly because of thermal effects. Al-
though thermal amplitude is difficult to evaluate,
it was nevertheless used to measure the Young’s
modulus in a previous study (12). (B) Resonant
excitation of the fundamental mode of vibration
($1" 530 kHz); the shape corresponds closely to
that expected for a cantilevered uniform beam.
The high contrast at the extremes of the oscilla-
tions is caused by the relatively long times spent
at the turning points [compare with (A)]. (C)
Resonant excitation of the second harmonic ($2
" 3.01 MHz). Both the frequency and the shape
correspond reasonably well to that expected for
this harmonic. For this nanotube, Eb " 0.21 TPa.
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caused a time-dependent force and dynamic
deflections (the forces are described in Eq. 2).
Adjustment of the angular frequency ! "
2#$ allowed the nanotubes to be resonantly
excited, which caused large-amplitude de-
flections for relatively small excitation volt-
ages Vd. For example, for the vibrations in
Fig. 2B, Vd " 100 mV and the frequency $1

" 530 kHz. The shape of the dynamically
deflected nanotube (which is independent of
the details of the force distribution on the
nanotube) corresponds to the shape predicted
for a resonantly excited cantilevered beam.
The frequencies are found from the following

equation (29)

$j !
%j

2

8#

1
L2 !&D2 " Di

2' !Eb

(
(1)

where D is the outer diameter, Di is the inner
diameter, Eb is the elastic modulus, ( is the
density, and %j is a constant for the j th har-
monic: %1 " 1.875, %2 " 4.694. This equa-
tion results from the Bernoulli-Euler analysis
of cantilevered elastic beams (29). If the
beam bends by elongation of the outer arc
and a compression of the inner arc of the
bend, then Eb can be identified with the
Young’s modulus E of the material (29).
However, to retain generality, we will call
this constant the effective bending modulus
Eb, for the reasons given below.

Higher modes can be excited, such as the
second harmonic of the same nanotube (Fig.
2C). The frequency of this vibration is $2 "
3.01 MHz " 5.68 $1. For a uniform cantile-
vered beam, the theoretical ratio $2/$1 " 6.2
(29). The position of the node in the $2 mode
is found at 0.76 L, which is very close to the
theoretical value of 0.8 L (29). Although a
detailed analysis of the sequence of harmon-
ics combined with an analysis of the deflect-
ed contours can provide detailed information

on individual nanotubes, we have chosen to
concentrate on trends in the elastic moduli
with nanotube diameter. The resonant fre-
quencies may drift very slightly with time
(either positively or negatively). However,
we have not found evidence for irreversible
changes to the nanotubes. Even when a large-
amplitude resonant vibration was applied to a
nanotube for 30 min ()109 cycles), the fre-
quency drift was less than 1%.

Figure 3 shows the Eb for several MWNTs
determined from measurements of $1, D, and L
(30). Several values from other sources are
superimposed. It is clear that Eb is very large
(*1 TPa) for D + 10 nm, and that Eb drops
dramatically to lower values (Eb * 100 GPa)
for tubes of larger diameter. For small D, our
measurements correspond well with those
found by others, but for larger D our values are
significantly lower than those found in (16).

Such a great reduction in Eb must be related
to the emergence of another bending mode of
the nanotube. Most likely, this mode corre-
sponds to the wavelike distortion or ripple on
the inner arc of the bent nanotube that is ob-
served for slightly bent, relatively thick nano-
tubes (11, 20). A particularly clear example is
shown in Fig. 3D (31). The ripple structure in
the tube 31 nm in diameter caused the nanotube
to bend uniformly, with a radius of curvature
from *400 nm, which is only a factor of 3
smaller than typical curvatures in the resonant
experiments described here. The amplitude of
the ripple increased uniformly from essentially
0 for layers near the center of the nanotube to
about 2 to 3 nm for the outer layers. There were
no discontinuities in consecutive interlayer
spacings nor was there evidence of defects.
Ripple amplitude increased continuously and
smoothty with decreasing nanotube curvature.
In contrast, a thin slightly bent nanotube (8 nm
in diameter) did not present ripples for a 300-
nm radius of curvature, but the same tube did
show evidence for buckling (32) and damage
on sections where the radius of curvature was
decreased to 24 nm (11, 19).

The appearance of the ripples is most likely
related to the consequent reduced compression
of the carbon bonds of the inner arc of the bend
as compared with uniform bending. This pro-
cess causes a large reduction in the strain ener-
gy associated with the Young’s modulus paral-
lel to the basal plane of graphite (for bulk
graphite, Ea " 1.06 TPa). The rippling mode is
likely to be energetically favorable (at least for
large diameter tubes), because the other four
elastic moduli for bulk graphite are all much
smaller than Ea (33). However, a detailed the-
oretical analysis will be required to explain the
crossover from the uniform (compression/elon-
gation) mode to the rippling mode.

Defects that cross-link adjacent nanotube
layers could prevent this rippling effect and
thereby cause the nanotubes to retain their
large Eb. This mechanism could then explain

Fig. 1. Electron micrographs of the electrome-
chanical deflections of a carbon nanotube. (A)
Uncharged nanotube (Vs" 0). (B) Charged nano-
tube (Vs " 20 V). Here an electrical potential
difference was applied between the nanotube
(which was connected to a nanotube fiber) and a
counterelectrode (not shown). The charge in-
duced on the nanotube interacted with the elec-
tric fields between the nanotube and the coun-
terelectrode and resulted in an attractive force,
which caused the nanotube to bend. An analysis
of the shape of the bent nanotube showed that
essentially all of the induced charge was at the tip
of the nanotube. The bending process was revers-
ible even for extreme bends (with radii of curva-
ture +100 nm), which indicates the large elastic
strength of the nanotubes. (C) Measured static
deflections as a function of Vs for two nano-
tubes (solid circles: D " 18 nm, L " 4.6 ,m;
open circles: D " 41 nm, L " 1.5 ,m), showing
the quadratic dependence on Vs. The slight
voltage offsets of the minima of the fitted
parabola are attributed to work function effects
(see also Fig. 4).

Fig. 2.Nanotube response to resonant alternating
applied potentials. (A) In the absence of a poten-
tial, the nanotube tip (L" 6.25,m,D" 14.5 nm)
vibrated slightly because of thermal effects. Al-
though thermal amplitude is difficult to evaluate,
it was nevertheless used to measure the Young’s
modulus in a previous study (12). (B) Resonant
excitation of the fundamental mode of vibration
($1" 530 kHz); the shape corresponds closely to
that expected for a cantilevered uniform beam.
The high contrast at the extremes of the oscilla-
tions is caused by the relatively long times spent
at the turning points [compare with (A)]. (C)
Resonant excitation of the second harmonic ($2
" 3.01 MHz). Both the frequency and the shape
correspond reasonably well to that expected for
this harmonic. For this nanotube, Eb " 0.21 TPa.
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electrostatic deflection of CNT
[de Heer group, Nature ’99]

mechanical bending 
of SiO2 nanobeam

[Carr, Wybourne, APL ’03]
wrinkling by compression

[Falvo et al., Nature ’97]
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Nanomechanical instabilities:

supports as they become undercut by the plasma etching.

Beams with different lengths and widths showed similar ini-

tial and postrelease buckling behavior. To minimize effects

related to the supports we only consider the initial displace-

ments yi of the beams. The variation of yi with d for fixed

length L!7.5 !m is shown in Fig. 2"a#, and the variation
with L for fixed width d!60 nm is shown in Fig. 2"b#. Also,
we find that the buckling direction is random; the number of

beams which buckled ‘‘left’’ was approximately equal to the

number that buckled ‘‘right’’ independent of dimensions.

To compare the observed displacements with theory we

consider the problem of determining the equilibrium post-

buckling eigenfunctions and eigenvalues of a beam, which

has a rich history dating back to early work by Euler and

Lagrange.13 For a strained elastic thin-walled structure the

potential energy functional has the form10,14

V$y"x #%!
1

2
F&2! "y!#2 dx"

1

2
F'! "y"#2 dx

"
1

8

F
L

" ! "y"#2dx # 2, "1#

with the linear modulus F!Qwd where Q is Young’s

Modulus, & is the radius of gyration, ' is the strain, and y(x)
is the eigenfunction "primes denote differentiation y"
(dy(x)/dx). In Eq. "1# the first term is the energy of bend-

ing, the second term is the energy due to tensile ('#0) or
compressive ('$0) strain, and the last term represents the

increase in tension due to the stretching effect of the trans-

verse displacement and acts to stabilize the system. The ex-

act form of the eigenfunctions and eigenvalues are deter-

mined by the boundary conditions. For clamped boundary

conditions, y(0)!0!y(L) and y"(0)!0!y"(L), the fun-
damental eigenfunction is

y"x #!
1

2
ymid$1%cos" 2)

x

L
# % , "2#

where the fundamental wave number 2)/L!('/&2)1/2. In
Fig. 1 we show the comparison between the measured

boundary curves and the eigenfunction for clamped bound-

ary conditions given by Eq. "2#. We find good agreement
between the measured eigenfunctions and Eq. "2# for all of
the buckled beams studied, though seemingly small devia-

tions from clamped boundary conditions may be important

as discussed below.

We have compared the measured initial displacement yi
for the different width and length beams with the model

given in Eq. "1#. Equation "1# describes the dependence of
the initial displacement on width and length in Figs. 2"a# and
2"b# for (d/L)&0.01, but cannot account for the smaller
displacements for which (d/L)'0.01. These smaller dis-
placements can be attributed to asymmetries due to slight

deviation from ideal clamped boundary conditions and/or

fabrication artifacts, such as slight misalignment of the sup-

ports during lithography or small variations in the plasma

etching rate across the sample. Here we assume that, what-

ever the origin of the asymmetry, the effect is always to

induce a nonzero displacement prior to the Euler buckling

instability. We assume the displacement due to asymmetry is

characterized by the function y*( 1
2*L+1%cos$2) (x/L)%,,

where * is a dimensionless measure of the asymmetry.15 This
requires Eq. "1# to be generalized such that the bending mo-

FIG. 1. "Color# Extracted boundary curves from the beam shown in the inset
using image processing. The axes are the scaled distance between the sup-

ports and the scaled transverse displacement. The blue curve is the ‘‘upper’’

boundary and the red curve the ‘‘lower’’ boundary of the beam in the inset,

and the black curve is the eigenfunction for clampled boundary conditions

given by Eq. "2#. Inset: Scanning electron micrograph of a free-standing
SiO2 buckled nanomechanical beam with the supports on the left and right

fixed to the substrate. The length L and width d are labeled on the micro-

graph. Scale bar is 1 !m.

FIG. 2. "a# Dependence of the initial buckling displacement y i on the width
d for fixed length L!7.5 !m. Inset: Midpoint buckling displacement ymid
as a function of the etching time for the beam with L!7.5 ! and d!60 nm.
yi is the initial buckling displacement. For this beam 85 seconds of plasma

etching time was required for release resulting in y i-200 nm. "b# Depen-
dence of the initial buckling disbuckling displacement yi on the length L for

fixed width d!60 nm. In both "a# and "b# the theoretical curve with a
non-zero asymmetry parameter "solid curve: *.0) is compared with the
theoretical curve assuming no asymmetry "dashed curve: *!0). The solid
curve is a fit to the data with '!%0.46%(0.08% and *!(1.1(0.8)
)10%3 as fitting parameters.
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caused a time-dependent force and dynamic
deflections (the forces are described in Eq. 2).
Adjustment of the angular frequency ! "
2#$ allowed the nanotubes to be resonantly
excited, which caused large-amplitude de-
flections for relatively small excitation volt-
ages Vd. For example, for the vibrations in
Fig. 2B, Vd " 100 mV and the frequency $1

" 530 kHz. The shape of the dynamically
deflected nanotube (which is independent of
the details of the force distribution on the
nanotube) corresponds to the shape predicted
for a resonantly excited cantilevered beam.
The frequencies are found from the following

equation (29)

$j !
%j

2

8#

1
L2 !&D2 " Di

2' !Eb

(
(1)

where D is the outer diameter, Di is the inner
diameter, Eb is the elastic modulus, ( is the
density, and %j is a constant for the j th har-
monic: %1 " 1.875, %2 " 4.694. This equa-
tion results from the Bernoulli-Euler analysis
of cantilevered elastic beams (29). If the
beam bends by elongation of the outer arc
and a compression of the inner arc of the
bend, then Eb can be identified with the
Young’s modulus E of the material (29).
However, to retain generality, we will call
this constant the effective bending modulus
Eb, for the reasons given below.

Higher modes can be excited, such as the
second harmonic of the same nanotube (Fig.
2C). The frequency of this vibration is $2 "
3.01 MHz " 5.68 $1. For a uniform cantile-
vered beam, the theoretical ratio $2/$1 " 6.2
(29). The position of the node in the $2 mode
is found at 0.76 L, which is very close to the
theoretical value of 0.8 L (29). Although a
detailed analysis of the sequence of harmon-
ics combined with an analysis of the deflect-
ed contours can provide detailed information

on individual nanotubes, we have chosen to
concentrate on trends in the elastic moduli
with nanotube diameter. The resonant fre-
quencies may drift very slightly with time
(either positively or negatively). However,
we have not found evidence for irreversible
changes to the nanotubes. Even when a large-
amplitude resonant vibration was applied to a
nanotube for 30 min ()109 cycles), the fre-
quency drift was less than 1%.

Figure 3 shows the Eb for several MWNTs
determined from measurements of $1, D, and L
(30). Several values from other sources are
superimposed. It is clear that Eb is very large
(*1 TPa) for D + 10 nm, and that Eb drops
dramatically to lower values (Eb * 100 GPa)
for tubes of larger diameter. For small D, our
measurements correspond well with those
found by others, but for larger D our values are
significantly lower than those found in (16).

Such a great reduction in Eb must be related
to the emergence of another bending mode of
the nanotube. Most likely, this mode corre-
sponds to the wavelike distortion or ripple on
the inner arc of the bent nanotube that is ob-
served for slightly bent, relatively thick nano-
tubes (11, 20). A particularly clear example is
shown in Fig. 3D (31). The ripple structure in
the tube 31 nm in diameter caused the nanotube
to bend uniformly, with a radius of curvature
from *400 nm, which is only a factor of 3
smaller than typical curvatures in the resonant
experiments described here. The amplitude of
the ripple increased uniformly from essentially
0 for layers near the center of the nanotube to
about 2 to 3 nm for the outer layers. There were
no discontinuities in consecutive interlayer
spacings nor was there evidence of defects.
Ripple amplitude increased continuously and
smoothty with decreasing nanotube curvature.
In contrast, a thin slightly bent nanotube (8 nm
in diameter) did not present ripples for a 300-
nm radius of curvature, but the same tube did
show evidence for buckling (32) and damage
on sections where the radius of curvature was
decreased to 24 nm (11, 19).

The appearance of the ripples is most likely
related to the consequent reduced compression
of the carbon bonds of the inner arc of the bend
as compared with uniform bending. This pro-
cess causes a large reduction in the strain ener-
gy associated with the Young’s modulus paral-
lel to the basal plane of graphite (for bulk
graphite, Ea " 1.06 TPa). The rippling mode is
likely to be energetically favorable (at least for
large diameter tubes), because the other four
elastic moduli for bulk graphite are all much
smaller than Ea (33). However, a detailed the-
oretical analysis will be required to explain the
crossover from the uniform (compression/elon-
gation) mode to the rippling mode.

Defects that cross-link adjacent nanotube
layers could prevent this rippling effect and
thereby cause the nanotubes to retain their
large Eb. This mechanism could then explain

Fig. 1. Electron micrographs of the electrome-
chanical deflections of a carbon nanotube. (A)
Uncharged nanotube (Vs" 0). (B) Charged nano-
tube (Vs " 20 V). Here an electrical potential
difference was applied between the nanotube
(which was connected to a nanotube fiber) and a
counterelectrode (not shown). The charge in-
duced on the nanotube interacted with the elec-
tric fields between the nanotube and the coun-
terelectrode and resulted in an attractive force,
which caused the nanotube to bend. An analysis
of the shape of the bent nanotube showed that
essentially all of the induced charge was at the tip
of the nanotube. The bending process was revers-
ible even for extreme bends (with radii of curva-
ture +100 nm), which indicates the large elastic
strength of the nanotubes. (C) Measured static
deflections as a function of Vs for two nano-
tubes (solid circles: D " 18 nm, L " 4.6 ,m;
open circles: D " 41 nm, L " 1.5 ,m), showing
the quadratic dependence on Vs. The slight
voltage offsets of the minima of the fitted
parabola are attributed to work function effects
(see also Fig. 4).

Fig. 2.Nanotube response to resonant alternating
applied potentials. (A) In the absence of a poten-
tial, the nanotube tip (L" 6.25,m,D" 14.5 nm)
vibrated slightly because of thermal effects. Al-
though thermal amplitude is difficult to evaluate,
it was nevertheless used to measure the Young’s
modulus in a previous study (12). (B) Resonant
excitation of the fundamental mode of vibration
($1" 530 kHz); the shape corresponds closely to
that expected for a cantilevered uniform beam.
The high contrast at the extremes of the oscilla-
tions is caused by the relatively long times spent
at the turning points [compare with (A)]. (C)
Resonant excitation of the second harmonic ($2
" 3.01 MHz). Both the frequency and the shape
correspond reasonably well to that expected for
this harmonic. For this nanotube, Eb " 0.21 TPa.
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caused a time-dependent force and dynamic
deflections (the forces are described in Eq. 2).
Adjustment of the angular frequency ! "
2#$ allowed the nanotubes to be resonantly
excited, which caused large-amplitude de-
flections for relatively small excitation volt-
ages Vd. For example, for the vibrations in
Fig. 2B, Vd " 100 mV and the frequency $1

" 530 kHz. The shape of the dynamically
deflected nanotube (which is independent of
the details of the force distribution on the
nanotube) corresponds to the shape predicted
for a resonantly excited cantilevered beam.
The frequencies are found from the following

equation (29)

$j !
%j

2

8#

1
L2 !&D2 " Di

2' !Eb

(
(1)

where D is the outer diameter, Di is the inner
diameter, Eb is the elastic modulus, ( is the
density, and %j is a constant for the j th har-
monic: %1 " 1.875, %2 " 4.694. This equa-
tion results from the Bernoulli-Euler analysis
of cantilevered elastic beams (29). If the
beam bends by elongation of the outer arc
and a compression of the inner arc of the
bend, then Eb can be identified with the
Young’s modulus E of the material (29).
However, to retain generality, we will call
this constant the effective bending modulus
Eb, for the reasons given below.

Higher modes can be excited, such as the
second harmonic of the same nanotube (Fig.
2C). The frequency of this vibration is $2 "
3.01 MHz " 5.68 $1. For a uniform cantile-
vered beam, the theoretical ratio $2/$1 " 6.2
(29). The position of the node in the $2 mode
is found at 0.76 L, which is very close to the
theoretical value of 0.8 L (29). Although a
detailed analysis of the sequence of harmon-
ics combined with an analysis of the deflect-
ed contours can provide detailed information

on individual nanotubes, we have chosen to
concentrate on trends in the elastic moduli
with nanotube diameter. The resonant fre-
quencies may drift very slightly with time
(either positively or negatively). However,
we have not found evidence for irreversible
changes to the nanotubes. Even when a large-
amplitude resonant vibration was applied to a
nanotube for 30 min ()109 cycles), the fre-
quency drift was less than 1%.

Figure 3 shows the Eb for several MWNTs
determined from measurements of $1, D, and L
(30). Several values from other sources are
superimposed. It is clear that Eb is very large
(*1 TPa) for D + 10 nm, and that Eb drops
dramatically to lower values (Eb * 100 GPa)
for tubes of larger diameter. For small D, our
measurements correspond well with those
found by others, but for larger D our values are
significantly lower than those found in (16).

Such a great reduction in Eb must be related
to the emergence of another bending mode of
the nanotube. Most likely, this mode corre-
sponds to the wavelike distortion or ripple on
the inner arc of the bent nanotube that is ob-
served for slightly bent, relatively thick nano-
tubes (11, 20). A particularly clear example is
shown in Fig. 3D (31). The ripple structure in
the tube 31 nm in diameter caused the nanotube
to bend uniformly, with a radius of curvature
from *400 nm, which is only a factor of 3
smaller than typical curvatures in the resonant
experiments described here. The amplitude of
the ripple increased uniformly from essentially
0 for layers near the center of the nanotube to
about 2 to 3 nm for the outer layers. There were
no discontinuities in consecutive interlayer
spacings nor was there evidence of defects.
Ripple amplitude increased continuously and
smoothty with decreasing nanotube curvature.
In contrast, a thin slightly bent nanotube (8 nm
in diameter) did not present ripples for a 300-
nm radius of curvature, but the same tube did
show evidence for buckling (32) and damage
on sections where the radius of curvature was
decreased to 24 nm (11, 19).

The appearance of the ripples is most likely
related to the consequent reduced compression
of the carbon bonds of the inner arc of the bend
as compared with uniform bending. This pro-
cess causes a large reduction in the strain ener-
gy associated with the Young’s modulus paral-
lel to the basal plane of graphite (for bulk
graphite, Ea " 1.06 TPa). The rippling mode is
likely to be energetically favorable (at least for
large diameter tubes), because the other four
elastic moduli for bulk graphite are all much
smaller than Ea (33). However, a detailed the-
oretical analysis will be required to explain the
crossover from the uniform (compression/elon-
gation) mode to the rippling mode.

Defects that cross-link adjacent nanotube
layers could prevent this rippling effect and
thereby cause the nanotubes to retain their
large Eb. This mechanism could then explain

Fig. 1. Electron micrographs of the electrome-
chanical deflections of a carbon nanotube. (A)
Uncharged nanotube (Vs" 0). (B) Charged nano-
tube (Vs " 20 V). Here an electrical potential
difference was applied between the nanotube
(which was connected to a nanotube fiber) and a
counterelectrode (not shown). The charge in-
duced on the nanotube interacted with the elec-
tric fields between the nanotube and the coun-
terelectrode and resulted in an attractive force,
which caused the nanotube to bend. An analysis
of the shape of the bent nanotube showed that
essentially all of the induced charge was at the tip
of the nanotube. The bending process was revers-
ible even for extreme bends (with radii of curva-
ture +100 nm), which indicates the large elastic
strength of the nanotubes. (C) Measured static
deflections as a function of Vs for two nano-
tubes (solid circles: D " 18 nm, L " 4.6 ,m;
open circles: D " 41 nm, L " 1.5 ,m), showing
the quadratic dependence on Vs. The slight
voltage offsets of the minima of the fitted
parabola are attributed to work function effects
(see also Fig. 4).

Fig. 2.Nanotube response to resonant alternating
applied potentials. (A) In the absence of a poten-
tial, the nanotube tip (L" 6.25,m,D" 14.5 nm)
vibrated slightly because of thermal effects. Al-
though thermal amplitude is difficult to evaluate,
it was nevertheless used to measure the Young’s
modulus in a previous study (12). (B) Resonant
excitation of the fundamental mode of vibration
($1" 530 kHz); the shape corresponds closely to
that expected for a cantilevered uniform beam.
The high contrast at the extremes of the oscilla-
tions is caused by the relatively long times spent
at the turning points [compare with (A)]. (C)
Resonant excitation of the second harmonic ($2
" 3.01 MHz). Both the frequency and the shape
correspond reasonably well to that expected for
this harmonic. For this nanotube, Eb " 0.21 TPa.
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electrostatic deflection of CNT
[de Heer group, Nature ’99]

mechanical bending 
of SiO2 nanobeam

[Carr, Wybourne, APL ’03]
wrinkling by compression

[Falvo et al., Nature ’97]

Euler instability in nanoelectromechanical systems?

Vg

µL µR

Fsource drain

gate

Fe

• nanobeam
• carbon nanotube

e.g.: Motivation:

‣ how Euler instability affects transport characteristics? 
‣ how current flow affects back Euler instability?

Question: 
interplay between mechanical & electronic degrees of 
freedom

strong electromechanical coupling close to instability
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large backaction of the oscillator on the SET. The non-
linear term limits the divergence at the threshold, fixing
the maximum attainable increase of the gap opening at
low bias voltages. Our results have been obtained for
the specific sequential-tunneling transport regime of a
single-level quantum dots, and stay qualitatively valid in
the metallic case, as well as for the resonant transport
regime.43 Experimentally, we predict that the current is
suppressed if, for instance, at fixed temperature the force
acting on the beam is swept through its critical value.
The implementation of such a device could be performed
by the method routinely employed to control break junc-
tions through a force pushing the substrate of the device.

Acknowledgments

We acknowledge stimulating discussions with Eros
Mariani, as well as financial support by ANR contract
JCJC-036 NEMESIS, and by the DFG through Sfb 658.

Appendix A: Elasticity theory of the Euler
instability

The elastic Lagrangian of a homogeneous rod of length
L fixed at its two ends consists of three parts,

L = T − Vb − VF . (A1)

The kinetic term reads

T =
σ

2

� L

0
ds ḣ2, (A2)

where σ is the linear mass density, s the arc length along
the rod, and h(s, t) the displacement of the rod with re-
spect to the u-axis (see Fig. 8). The bending energy,
controlled by the bending rigidity κ, is given by

Vb =
κ

2

� L

0
ds

����
dt̂

ds

����
2

=
κ

2

� L

0
ds

h��2

1− h�2
, (A3)

where t̂ = (u�, h�) is the tangent vector of the rod and
primes denote derivative with respect to s. The last term

in Eq. (A1) corresponds to the work done by the com-
pression force F on the rod and reads

VF = −F (L− umax) = −F

� L

0
ds

�
1−

�
1− h�2

�
,

(A4)
where umax is the total extent of the rod along the u-axis
(see Fig. 8).

For small deflections (|h�| � 1), the Lagrangian (A1)
becomes, in harmonic approximation,

L �
� L

0
ds

�
σ

2
ḣ2 − κ

2
h��2 +

F

2
h�2

�
(A5)

with the corresponding Euler-Lagrange equation

σḧ + κh���� + Fh�� = 0. (A6)

The associated normal modes hn(s, t) = Xn(t)gn(s) have
frequencies

ω2
n =

κ

σ
q2
n

�
q2
n −

F

κ

�
(A7)

with n integer and qn the wavenumber of the mode n
which depends on the considered boundary conditions.
The vibrational frequency of the fundamental bending
mode (n = 1) thus vanishes at the critical force Fc =
κq2

1 , while all higher modes have a finite frequency and
hence are neglected in what follows. For F > Fc, the
fundamental mode is unstable, and quartic corrections to
the Lagrangian are necessary to ensure global stability.
Denoting ω1 = ω and X1 = X, expanding the Lagrangian
(A1) to quartic order in the displacement and inserting
the solution h1 of the harmonic problem, we thus obtain
the effective Lagrangian close to the Euler instability,

L =
m

2
Ẋ2 − mω2

2
X2 − α

4
X4, (A8)

with the effective mass

m = σ

� L

0
ds g2

1 , (A9)

and

α =
� L

0
ds

�
2κg��

1
2
g�
1
2 − Fc

2
g�
1
4
�

. (A10)

Notice that a priori, α depends on the force F . However,
close to the buckling instability, we can approximate F �
Fc in Eq. (A10).

The parameters entering the effective Lagrangian (A8)
and the corresponding vibrational Hamiltonian (1) are
given in Table I for two types of boundary conditions:
hinged end points (h

��
0,L

= h��
��
0,L

= 0) and clamped
end points (h

��
0,L

= h�
��
0,L

= 0). Notice that in the latter
case, only an approximate solution of the Euler-Lagrange
equation (A6) can be found, which is valid in the vicinity
of the Euler instability, i.e., for F � Fc.

L =
� L

0
ds

�
σ

2
ḣ2 − κ

2
h��2

1− h�2
− F

��
1− h�2 − 1

��

harmonic approximation:

L �
� L

0
ds

�
σ

2
ḣ2 − κ

2
h��2 +

F

2
h�2

�

bending energy
work done by 
applied force
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large backaction of the oscillator on the SET. The non-
linear term limits the divergence at the threshold, fixing
the maximum attainable increase of the gap opening at
low bias voltages. Our results have been obtained for
the specific sequential-tunneling transport regime of a
single-level quantum dots, and stay qualitatively valid in
the metallic case, as well as for the resonant transport
regime.43 Experimentally, we predict that the current is
suppressed if, for instance, at fixed temperature the force
acting on the beam is swept through its critical value.
The implementation of such a device could be performed
by the method routinely employed to control break junc-
tions through a force pushing the substrate of the device.
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Appendix A: Elasticity theory of the Euler
instability

The elastic Lagrangian of a homogeneous rod of length
L fixed at its two ends consists of three parts,

L = T − Vb − VF . (A1)

The kinetic term reads

T =
σ

2

� L

0
ds ḣ2, (A2)

where σ is the linear mass density, s the arc length along
the rod, and h(s, t) the displacement of the rod with re-
spect to the u-axis (see Fig. 8). The bending energy,
controlled by the bending rigidity κ, is given by

Vb =
κ

2

� L

0
ds

����
dt̂

ds

����
2

=
κ

2

� L

0
ds

h��2

1− h�2
, (A3)

where t̂ = (u�, h�) is the tangent vector of the rod and
primes denote derivative with respect to s. The last term

in Eq. (A1) corresponds to the work done by the com-
pression force F on the rod and reads

VF = −F (L− umax) = −F

� L

0
ds

�
1−

�
1− h�2

�
,

(A4)
where umax is the total extent of the rod along the u-axis
(see Fig. 8).

For small deflections (|h�| � 1), the Lagrangian (A1)
becomes, in harmonic approximation,

L �
� L

0
ds

�
σ

2
ḣ2 − κ

2
h��2 +

F

2
h�2

�
(A5)

with the corresponding Euler-Lagrange equation

σḧ + κh���� + Fh�� = 0. (A6)

The associated normal modes hn(s, t) = Xn(t)gn(s) have
frequencies

ω2
n =

κ

σ
q2
n

�
q2
n −

F

κ

�
(A7)

with n integer and qn the wavenumber of the mode n
which depends on the considered boundary conditions.
The vibrational frequency of the fundamental bending
mode (n = 1) thus vanishes at the critical force Fc =
κq2

1 , while all higher modes have a finite frequency and
hence are neglected in what follows. For F > Fc, the
fundamental mode is unstable, and quartic corrections to
the Lagrangian are necessary to ensure global stability.
Denoting ω1 = ω and X1 = X, expanding the Lagrangian
(A1) to quartic order in the displacement and inserting
the solution h1 of the harmonic problem, we thus obtain
the effective Lagrangian close to the Euler instability,

L =
m

2
Ẋ2 − mω2

2
X2 − α

4
X4, (A8)

with the effective mass

m = σ

� L

0
ds g2

1 , (A9)

and

α =
� L

0
ds

�
2κg��

1
2
g�
1
2 − Fc

2
g�
1
4
�

. (A10)

Notice that a priori, α depends on the force F . However,
close to the buckling instability, we can approximate F �
Fc in Eq. (A10).

The parameters entering the effective Lagrangian (A8)
and the corresponding vibrational Hamiltonian (1) are
given in Table I for two types of boundary conditions:
hinged end points (h

��
0,L

= h��
��
0,L

= 0) and clamped
end points (h

��
0,L

= h�
��
0,L

= 0). Notice that in the latter
case, only an approximate solution of the Euler-Lagrange
equation (A6) can be found, which is valid in the vicinity
of the Euler instability, i.e., for F � Fc.

L =
� L

0
ds

�
σ

2
ḣ2 − κ

2
h��2
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− F
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harmonic approximation:
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‣ restrict to low-energy unstable mode with mode amplitude    :X

Discontinuous Euler instability in nanoelectromechanical systems

Guillaume Weick,1,2 Fabio Pistolesi,3,4 Eros Mariani,1,5 and Felix von Oppen1

1Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany
2IPCMS (UMR 7504), CNRS and Université de Strasbourg, F-67034 Strasbourg, France
3CPMOH (UMR 5798), CNRS and Université de Bordeaux I, F-33405 Talence, France

4LPMMC (UMR 5493), CNRS and Université Joseph Fourier, F-38042 Grenoble, France
5School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK

!Received 22 February 2010; published 12 March 2010"

We investigate nanoelectromechanical systems near mechanical instabilities. We show that, quite generally,
the interaction between the electronic and the vibronic degrees of freedom can be accounted for essentially
exactly when the instability is continuous. We apply our general framework to the Euler buckling instability
and find that the interaction between electronic and vibronic degrees of freedom qualitatively affects the
mechanical instability, turning it into a discontinuous one in close analogy with tricritical points in the Landau
theory of phase transitions.
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.

F > Fc

F < Fc(a)

(b)

(c)

C, R C, R

−V/2

Cg

VgV/2

FIG. 1. !Color online" Sketch of a nanobeam !a" in the flat state
and !b" the buckled state with two equivalent metastable positions
of the rod !solid and dashed lines". An equivalent circuit of the
embedded SET is shown in !c".
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‣ include anharmonic corrections:

Hvib =
P
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2m
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mω2

2
X

2 +
α

4
X

4
critical force:

anharmonicity:

Fc = κ

�
2π

L

�2
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� π

2L

�4

ω2 = ω2
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�
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�
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�
κ
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frequency for           :F = 0
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erties of the rod.

large backaction of the oscillator on the SET. The non-
linear term limits the divergence at the threshold, fixing
the maximum attainable increase of the gap opening at
low bias voltages. Our results have been obtained for
the specific sequential-tunneling transport regime of a
single-level quantum dots, and stay qualitatively valid in
the metallic case, as well as for the resonant transport
regime.43 Experimentally, we predict that the current is
suppressed if, for instance, at fixed temperature the force
acting on the beam is swept through its critical value.
The implementation of such a device could be performed
by the method routinely employed to control break junc-
tions through a force pushing the substrate of the device.
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Appendix A: Elasticity theory of the Euler
instability

The elastic Lagrangian of a homogeneous rod of length
L fixed at its two ends consists of three parts,

L = T − Vb − VF . (A1)

The kinetic term reads

T =
σ

2

� L

0
ds ḣ2, (A2)

where σ is the linear mass density, s the arc length along
the rod, and h(s, t) the displacement of the rod with re-
spect to the u-axis (see Fig. 8). The bending energy,
controlled by the bending rigidity κ, is given by

Vb =
κ

2

� L

0
ds

����
dt̂

ds

����
2

=
κ

2

� L

0
ds

h��2

1− h�2
, (A3)

where t̂ = (u�, h�) is the tangent vector of the rod and
primes denote derivative with respect to s. The last term

in Eq. (A1) corresponds to the work done by the com-
pression force F on the rod and reads

VF = −F (L− umax) = −F

� L

0
ds

�
1−

�
1− h�2

�
,

(A4)
where umax is the total extent of the rod along the u-axis
(see Fig. 8).

For small deflections (|h�| � 1), the Lagrangian (A1)
becomes, in harmonic approximation,

L �
� L

0
ds

�
σ

2
ḣ2 − κ

2
h��2 +

F

2
h�2

�
(A5)

with the corresponding Euler-Lagrange equation

σḧ + κh���� + Fh�� = 0. (A6)

The associated normal modes hn(s, t) = Xn(t)gn(s) have
frequencies

ω2
n =

κ

σ
q2
n

�
q2
n −

F

κ

�
(A7)

with n integer and qn the wavenumber of the mode n
which depends on the considered boundary conditions.
The vibrational frequency of the fundamental bending
mode (n = 1) thus vanishes at the critical force Fc =
κq2

1 , while all higher modes have a finite frequency and
hence are neglected in what follows. For F > Fc, the
fundamental mode is unstable, and quartic corrections to
the Lagrangian are necessary to ensure global stability.
Denoting ω1 = ω and X1 = X, expanding the Lagrangian
(A1) to quartic order in the displacement and inserting
the solution h1 of the harmonic problem, we thus obtain
the effective Lagrangian close to the Euler instability,

L =
m

2
Ẋ2 − mω2

2
X2 − α

4
X4, (A8)

with the effective mass

m = σ

� L

0
ds g2

1 , (A9)

and

α =
� L

0
ds

�
2κg��

1
2
g�
1
2 − Fc

2
g�
1
4
�

. (A10)

Notice that a priori, α depends on the force F . However,
close to the buckling instability, we can approximate F �
Fc in Eq. (A10).

The parameters entering the effective Lagrangian (A8)
and the corresponding vibrational Hamiltonian (1) are
given in Table I for two types of boundary conditions:
hinged end points (h

��
0,L

= h��
��
0,L

= 0) and clamped
end points (h

��
0,L

= h�
��
0,L

= 0). Notice that in the latter
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.
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FIG. 1. !Color online" Sketch of a nanobeam !a" in the flat state
and !b" the buckled state with two equivalent metastable positions
of the rod !solid and dashed lines". An equivalent circuit of the
embedded SET is shown in !c".
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.
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FIG. 1. !Color online" Sketch of a nanobeam !a" in the flat state
and !b" the buckled state with two equivalent metastable positions
of the rod !solid and dashed lines". An equivalent circuit of the
embedded SET is shown in !c".
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.
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Mechanical properties
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Classical current blockade
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Fsource drain

gate

Fe Hc = FeXn̂
Vg(X) = Vg − FeX

effective gate voltage:

addition of a single electron,              : 

∆X = Fe/mω2‣ displacement

∆Vg = F 2
e /mω2‣ effective shift of gate voltage

∆n = 1

∆V (F → Fc) = F 2
e /mω2 →∞

diverges at the Euler instability!

[Pistolesi, Labarthe, PRB '07]

∆V (F = 0) = F 2
e /mω2 ∼ 3− 5 µeV

‣ current blockade for V < ∆V

classical current blockade

quantum analog:
Franck-Condon blockade

[Koch, von Oppen, PRL '05]
[Leturcq et al., Nature Phys. '09]
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Enhanced current blockade
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δ = F/Fc − 1 mean-field results
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∆V � 5 meV
experiments on CNT:



Thermal fluctuations
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Full Langevin dynamics
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‣ Euler instability as paradigm of mechanical instability

‣ "critical slowing down" makes problem inherently classical, 
    and allows for asymptotically exact solution

‣ capacitive coupling (molecular quantum dot): 
strong enhancement of current blockade

‣ intrinsic coupling (metallic quantum dot): 
discontinuous Euler instability

Conclusion

[GW, F. Pistolesi, E. Mariani, F. von Oppen, Phys. Rev. B 81, 121409(R) (2010)]

Nanoelectromechanical systems near mechanical instabilities:

[GW, F. von Oppen, F. Pistolesi, submitted to Phys. Rev. B (arXiv:1010.0800)]
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We investigate nanoelectromechanical systems near mechanical instabilities. We show that, quite generally,
the interaction between the electronic and the vibronic degrees of freedom can be accounted for essentially
exactly when the instability is continuous. We apply our general framework to the Euler buckling instability
and find that the interaction between electronic and vibronic degrees of freedom qualitatively affects the
mechanical instability, turning it into a discontinuous one in close analogy with tricritical points in the Landau
theory of phase transitions.
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I. INTRODUCTION

The buckling of an elastic rod by a longitudinal compres-
sion force F applied to its two ends constitutes the paradigm
of a mechanical instability, called buckling instability.1 It
was first studied by Euler in 1744 while investigating the
maximal load that a column can sustain.2 As long as F stays
below a critical force Fc, the rod remains straight while for
F#Fc it buckles, as sketched in Figs. 1!a" and 1!b". The
transition between the two states is continuous and the fre-
quency of the fundamental bending mode vanishes at the
instability.

There has been much recent interest in exploring buckling
instabilities in nanomechanical systems. In the quest to un-
derstand the remarkable mechanical properties of
nanotubes,3–5 there have been observations of compressive
buckling instabilities in this system.6 The Euler buckling in-
stability has been observed in SiO2 nanobeams and shown to
obey continuum elasticity theory.7 There are also close rela-
tions with the recently observed wrinkling8 and possibly with
the rippling9 of suspended graphene samples. Theoretical
works have studied the quantum properties of nanobeams
near the Euler instability,10–13 proposing this system to ex-
plore zero-point fluctuations of a mechanical mode11 or to
serve as a mechanical qubit.13

In this work, we study the interaction of current flow with
the vibrational motion near such continuous mechanical in-
stabilities which constitutes a fundamental issue of
nanoelectromechanics.14 Remarkably, we find that under
quite general conditions, this problem admits an essentially
exact solution due to the continuity of the instability and the
consequent vanishing of the vibronic frequency at the tran-
sition !“critical slowing down”". In fact, the vanishing of the
frequency implies that the mechanical motion becomes slow
compared to the electronic dynamics and an appropriate non-
equilibrium Born-Oppenheimer !NEBO" approximation be-
comes asymptotically exact near the transition. Here, we il-
lustrate our general framework by applying it to the
nanoelectromechanics of the Euler instability.

We find that the interplay of electronic transport and the
mechanical instability causes significant qualitative changes

both in the nature of the buckling and in the transport prop-
erties. In leading order, the NEBO approximation yields a
current-induced conservative force acting on the vibronic
mode. At this order, our principal conclusion is that the cou-
pling to the electronic dynamics can change the nature of the
buckling instability from a continuous to a discontinuous
transition which is closely analogous to tricritical behavior in
the Landau theory of phase transitions. Including, in addi-
tion, the fluctuations of the current-induced force as well as
the corresponding dissipation leads to Langevin dynamics of
the vibrational mode which becomes important in the vicin-
ity of the discontinuous transition. Employing the same
NEBO limit to deduce the electronic current, we find that the
buckling instability induces a current blockade over a wide
range of parameters. This is a manifestation of the Franck-
Condon blockade15–17 whenever the buckling instability re-
mains continuous but is caused by a novel tricritical block-
ade when the instability is discontinuous. The emergence of
a current blockade in the buckled state suggests that our
setup could, in principle, serve as a mechanically controlled
switching device.

II. MODEL

Close to the Euler instability, the frequency of the funda-
mental bending mode of the beam approaches zero while all
higher modes have a finite frequency.1 This allows us to
retain only the fundamental mode of amplitude X #see Figs.

F > Fc

F < Fc(a)

(b)

(c)

C, R C, R

−V/2

Cg

VgV/2

FIG. 1. !Color online" Sketch of a nanobeam !a" in the flat state
and !b" the buckled state with two equivalent metastable positions
of the rod !solid and dashed lines". An equivalent circuit of the
embedded SET is shown in !c".
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Effect of offset charges
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