

Mechanical instabilities in carbon nanotube quantum dots

Guillaume Weick Mesoscopic Physics Team – IPCMS

CDFA meeting, Mont Sainte Odile, 7.10.2010

Collaborators

Fabio Pistolesi (CNRS Bordeaux/Grenoble)

Eros Mariani (School of Physics, Exeter)

Felix von Oppen (Freie Universität Berlin)

Molecular electronics

Park et al., Nature '02

Quantum dots

Single-molecule junctions

➡New effects due to additional degrees of freedom (vibrations, spin, conformation, ...)

Molecular electronics

Park et al., Nature '02

Quantum dots

Single-molecule junctions

⊣1µm

 $V_{\rm sd}$ [mV] 0-Co²⁺ Co³ -0.45 -0.50 -0.40 -0.35 $V_{\rm g}$ [V] ➡New effects due to additional degrees of

freedom (vibrations, spin, conformation, ...)

Molecular electronics

Quantum dots

Single-molecule junctions

⊢–––– 1*µ*m

Franck-Condon blockade in suspended CNT quantum dots

Current-induced conformational switching

[F. Elste, GW, C. Timm, F. von Oppen, Appl. Phys. A 93, 345 (2008)]

Current-induced conformational switching $V_1(x)$ **STM** tip $V_0(x)$

10

0

20

 $\beta V_{\rm b}$

30

40

[F. Elste, GW, C. Timm, F. von Oppen, Appl. Phys. A 93, 345 (2008)]

(b)

50

Paradigm of (continuous) mechanical instability:

 \blacksquare Elastic rod buckles when compression exceeds critical force F_c

CNIS

Nanomechanical instabilities:

electrostatic deflection of CNT [de Heer group, Nature '99]

wrinkling by compression [Falvo et al., Nature '97]

mechanical bending of SiO₂ nanobeam [Carr,Wybourne,APL '03]

Nanomechanical instabilities:

electrostatic deflection of CNT [de Heer group, Nature '99]

wrinkling by compression [Falvo et al., Nature '97]

mechanical bending of SiO₂ nanobeam [Carr,Wybourne,APL '03]

Euler instability in nanoelectromechanical systems?

- e.g.: nanobeam
 - carbon nanotube

Question:

interplay between mechanical & electronic degrees of freedom

- how Euler instability affects transport characteristics?
- how current flow affects back Euler instability?

Motivation:

strong electromechanical coupling close to instability

harmonic approximation:

$$\mathcal{L} \simeq \int_0^L \mathrm{d}s \left(\frac{\sigma}{2} \dot{h}^2 - \frac{\kappa}{2} {h''}^2 + \frac{F}{2} {h'}^2 \right)$$

- \blacktriangleright restrict to low-energy unstable mode with mode amplitude X:
- include anharmonic corrections:

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4$$

 $\omega^2 = \omega_0^2 \left(1 - \frac{F}{F_c} \right)$

critical force:

anharmonicity:

$$F_c = \kappa \left(\frac{2\pi}{L}\right)^2$$
$$\alpha = F_c L \left(\frac{\pi}{2L}\right)^4$$

frequency for
$$F = 0$$
: $\omega_0 = \sqrt{\frac{\kappa}{\sigma}} \left(\frac{2\pi}{L}\right)^2$

- \blacktriangleright restrict to low-energy unstable mode with mode amplitude X:
- include anharmonic corrections:

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4$$

$$\omega^2 = \omega_0^2 \left(1 - \frac{F}{F_c} \right)$$

critical force:

$$F_c = \kappa \left(\frac{2\pi}{L}\right)^2$$
$$\alpha = F_c L \left(\frac{\pi}{2L}\right)^4$$

anharmonicity:

$$\alpha = F_c L \left(\frac{\pi}{2L}\right)^2$$

frequency for
$$F = 0$$
: $\omega_0 = \sqrt{\frac{\kappa}{\sigma}} \left(\frac{2\pi}{L}\right)^2$

Euler instability
 "critical slowing down"

Template for Landau theory of continuous phase transitions:

Template for Landau theory of continuous phase transitions:

 $\hat{n} = 0, 1$: stochastic fluctuations of charge on the dot

Capacitive coupling

Intrinsic coupling $H_{c} = \frac{g}{2}X^{2}\hat{n} \qquad g > 0$

 $\hat{n}=0,1:~$ stochastic fluctuations of charge on the dot

	capacitive coupling	intrinsic coupling
molecular quantum dot	 more easily realized experimentally more pronounced effect on Coulomb blockade [GW et al., arXiv:1010.0800] 	
metallic quantum dot		 consistent w/ symmetry of pristine Euler instability more pronounced effect on Euler [GW et al., Phys. Rev. B '10]

Capacitive coupling

Intrinsic coupling

$$H_{\rm c} = \frac{g}{2} X^2 \hat{n} \qquad g > 0$$

 $\hat{n}=0,1:\;$ stochastic fluctuations of charge on the dot

	capacitive coupling	intrinsic coupling
molecular quantum dot	 more easily realized experimentally more pronounced effect on Coulomb blockade [GW et al., arXiv:1010.0800] 	
metallic quantum dot		 consistent w/ symmetry of pristine Euler instability more pronounced effect on Euler [GW et al., Phys. Rev. B '10]

 \blacktriangleright near instability, resonator much slower than electrons $(|\omega|\ll\Gamma)$

➡ asymptotically **exact** solution

vibrational dynamics effectively "frozen" during two subsequent tunneling events

CINIS

 \blacktriangleright near instability, resonator much slower than electrons $(|\omega|\ll\Gamma)$

➡ asymptotically **exact** solution

vibrational dynamics effectively "frozen" during two subsequent tunneling events

Non-equilibrium Born-Oppenheimer approximation:

(similar to Blanter et al., PRL '04 & Mozyrsky et al., PRB '06)

▶ to leading order: current-induced conservative force acting on vibrational mode

$$F_{\rm c-i}(X) = -(F_{\rm e} + gX)\langle \hat{n} \rangle_X \qquad \qquad H_{\rm c} = \left(F_{\rm e}X + \frac{g}{2}X^2\right)\hat{n}$$
average occupation of the dot for fixed X

CNIS

 \blacktriangleright near instability, resonator much slower than electrons $(|\omega|\ll\Gamma)$

➡ asymptotically **exact** solution

vibrational dynamics effectively "frozen" during two subsequent tunneling events

Non-equilibrium Born-Oppenheimer approximation:

(similar to Blanter et al., PRL '04 & Mozyrsky et al., PRB '06)

▶ to leading order: current-induced conservative force acting on vibrational mode

$$F_{\rm c-i}(X) = -(F_{\rm e} + gX)\langle \hat{n} \rangle_X \qquad \qquad H_{\rm c} = \left(F_{\rm e}X + \frac{g}{2}X^2\right)\hat{n}$$
average occupation of the dot for fixed X

next-to-leading order: fluctuations of current-induced force & corresponding dissipation

➡ leads to Langevin dynamics

$$m\ddot{X} + \frac{\eta(X)}{m}\dot{X} = F_{\text{eff}}(X) + \delta F_{\text{c-i}}(X,t)$$

 $F_{\text{eff}}(X) = -\partial_X H_{\text{vib}} + F_{\text{c-i}}(X)$ $\langle \delta F_{\text{c-i}}(X, t) \delta F_{\text{c-i}}(X, t') \rangle = D(X) \delta(t - t')$

• near instability, resonator much slower than electrons $(|\omega| \ll \Gamma)$

➡ asymptotically exact solution

vibrational dynamics effectively "frozen" during two subsequent tunneling events

Non-equilibrium Born-Oppenheimer approximation:

(similar to Blanter et al., PRL '04 & Mozyrsky et al., PRB '06)

to leading order: current-induced conservative force acting on vibrational mode

$$F_{\rm c-i}(X) = -(F_{\rm e} + gX)\langle \hat{n} \rangle_X \qquad \qquad H_{\rm c} = \left(F_{\rm e}X + \frac{g}{2}X^2\right)\hat{n}$$
average occupation of the dot for fixed X

Inext-to-leading order: fluctuations of current-induced force & corresponding dissipation

➡ leads to Langevin dynamics

$$m\ddot{X} + \frac{\eta(X)}{m}\dot{X} = F_{\text{eff}}(X) + \delta F_{\text{c-i}}(X,t)$$

 $F_{\text{eff}}(X) = -\partial_X H_{\text{vib}} + F_{\text{c-i}}(X)$ $\langle \delta F_{\text{c-i}}(X, t) \delta F_{\text{c-i}}(X, t') \rangle = D(X) \delta(t - t')$

Fokker-Planck description

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4 \qquad \qquad H_{\rm c} = h(X)\hat{n} \qquad \qquad h(X) = F_{\rm e}X + \frac{g}{2}X^2$$

Boltzmann equation:

 $\mathcal{H}_n = H_{\rm vib} + h(X)n$

classical vibrations $(\hbar|\omega| \ll k_{\rm B}T)$ sequential tunneling $(\hbar\Gamma \ll k_{\rm B}T)$ $\rightarrow \partial_t \mathcal{P}_n(X, P, t) = \{\mathcal{H}_n, \mathcal{P}_n\} - (-1)^n \Gamma_{01}(X) \mathcal{P}_0(X, P, t) + (-1)^n \Gamma_{10}(X) \mathcal{P}_1(X, P, t)$

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4 \qquad \qquad H_{\rm c} = h(X)\hat{n} \qquad \qquad h(X) = F_{\rm e}X + \frac{g}{2}X^2$$

Boltzmann equation:

 $\mathcal{H}_n = H_{\rm vib} + h(X)n$

classical vibrations $(\hbar|\omega| \ll k_{\rm B}T)$ sequential tunneling $(\hbar\Gamma \ll k_{\rm B}T)$ $\rightarrow \partial_t \mathcal{P}_n(X, P, t) = \{\mathcal{H}_n, \mathcal{P}_n\} - (-1)^n \Gamma_{01}(X) \mathcal{P}_0(X, P, t) + (-1)^n \Gamma_{10}(X) \mathcal{P}_1(X, P, t)$

adiabatic transport $(|\omega| \ll \Gamma) \rightarrow \delta \mathcal{P} \ll \mathcal{P}$

small!
$$\mathcal{P}_0 = \frac{\Gamma_{10}}{\Gamma} \mathcal{P} - \delta \mathcal{P}$$
 $\mathcal{P} = \mathcal{P}_0 + \mathcal{P}_1$
 $\mathcal{P}_1 = \frac{\Gamma_{01}}{\Gamma} \mathcal{P} + \delta \mathcal{P}$ $\Gamma = \Gamma_{01} + \Gamma_{10}$

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4 \qquad \qquad H_{\rm c} = h(X)\hat{n} \qquad \qquad h(X) = F_{\rm e}X + \frac{g}{2}X^2$$

Boltzmann equation:

 $\mathcal{H}_n = H_{\rm vib} + h(X)n$

classical vibrations $(\hbar|\omega| \ll k_{\rm B}T)$ sequential tunneling $(\hbar\Gamma \ll k_{\rm B}T)$ adiabatic transport $(|\omega| \ll \Gamma) \rightarrow \delta \mathcal{P} \ll \mathcal{P}$ small! $\mathcal{P}_0 = \frac{\Gamma_{10}}{\Gamma} \mathcal{P} - \delta \mathcal{P}$ $\mathcal{P} = \mathcal{P}_0 + \mathcal{P}_1$ $\mathcal{P}_1 = \frac{\Gamma_{01}}{\Gamma} \mathcal{P} + \delta \mathcal{P}$ $\Gamma = \Gamma_{01} + \Gamma_{10}$

Fokker-Planck equation:

 $F_{\text{c-i}}(X) = -(\partial_X h) \langle \hat{n} \rangle_X$

$$\partial_{t}\mathcal{P} = -\frac{P}{m}\partial_{X}\mathcal{P} - F_{\text{eff}}(X)\partial_{P}\mathcal{P} + \frac{\eta(X) + \eta_{\text{e}}}{m}\partial_{P}(P\mathcal{P}) + \left(\frac{D(X)}{2} + \eta_{\text{e}}k_{\text{B}}T\right)\partial_{P}^{2}\mathcal{P}$$

$$F_{\text{eff}}(X) = -\partial_{X}H_{\text{vib}} + F_{\text{c-i}}(X) \qquad \eta(X) = -\frac{(\partial_{X}h)\left(\partial_{X}\langle\hat{n}\rangle_{X}\right)}{\Gamma} \qquad \eta_{\text{e}}: \text{ accounts for finite } \mathsf{Q} \text{ of resonator}$$

 $D(X) = \frac{2(O_X h)}{\Gamma} \frac{\langle n \rangle_X (1 - \langle n \rangle_X)}{\Gamma}$

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4 \qquad \qquad H_{\rm c} = h(X)\hat{n} \qquad \qquad h(X) = F_{\rm e}X + \frac{g}{2}X^2$$

Boltzmann equation:

 $\mathcal{H}_n = H_{\rm vib} + h(X)n$

classical vibrations $(\hbar|\omega| \ll k_{\rm B}T)$ sequential tunneling $(\hbar\Gamma \ll k_{\rm B}T)$ $\rightarrow \delta \mathcal{P} \ll \mathcal{P}$ small! $\mathcal{P}_0 = \frac{\Gamma_{10}}{\Gamma} \mathcal{P} - \delta \mathcal{P}$ $\mathcal{P} = \mathcal{P}_0 + \mathcal{P}_1$ $\mathcal{P}_1 = \frac{\Gamma_{01}}{\Gamma} \mathcal{P} + \delta \mathcal{P}$ $\Gamma = \Gamma_{01} + \Gamma_{10}$

Fokker-Planck equation:

$$\partial_t \mathcal{P} = -\frac{P}{m} \partial_X \mathcal{P} - F_{\text{eff}}(X) \partial_P \mathcal{P} + \frac{\eta(X) + \eta_{\text{e}}}{m} \partial_P (P\mathcal{P}) + \left(\frac{D(X)}{2} + \eta_{\text{e}} k_{\text{B}} T\right) \partial_P^2 \mathcal{P}$$

$$F_{\text{eff}}(X) = -\partial_X H_{\text{vib}} + F_{\text{c-i}}(X) \qquad \eta(X) = -\frac{(\partial_X h) (\partial_X \langle \hat{n} \rangle_X)}{\Gamma}$$
$$F_{\text{c-i}}(X) = -(\partial_X h) \langle \hat{n} \rangle_X \qquad D(X) = \frac{2 (\partial_X h)^2 \langle \hat{n} \rangle_X (1 - \langle \hat{n} \rangle_X)}{\Gamma}$$

 $\eta_{\rm e}$: accounts for finite Q of resonator

Transport characteristics

$$I = \iint \mathrm{d}X \mathrm{d}P \,\mathcal{P}_{\mathrm{st}}(X, P) \mathcal{I}(X)$$

Mechanical properties

$$F_{\text{eff}}(X) = 0, \quad \frac{\mathrm{d}F_{\text{eff}}}{\mathrm{d}X} < 0$$

$$H_{\rm c} = F_{\rm e} X \hat{n}$$

effective gate voltage:

$$V_{\rm g}(X) = V_{\rm g} - F_{\rm e}X$$

effective gate voltage: $V_{\rm g}(X) = V_{\rm g} - F_{\rm e}X$

addition of a single electron, $\Delta n = 1$:

• displacement $\Delta X = F_{\rm e}/m\omega^2$

 \blacktriangleright effective shift of gate voltage $\,\Delta V_{\rm g} = F_{\rm e}^2/m\omega^2$

$$H_{\rm c} = F_{\rm e} X \hat{n}$$

effective gate voltage:

$$V_{\rm g}(X) = V_{\rm g} - F_{\rm e}X$$

classical current blockade [Pistolesi, Labarthe, PRB '07]

quantum analog: Franck-Condon blockade [Koch, von Oppen, PRL '05] [Leturcq *et al.*, Nature Phys. '09]

addition of a single electron, $\Delta n = 1$:

- displacement $\Delta X = F_{\rm e}/m\omega^2$
- \blacktriangleright effective shift of gate voltage $\,\Delta V_{\rm g} = F_{\rm e}^2/m\omega^2$
- \blacktriangleright current blockade for $~V < \Delta V$

$$\Delta V(F=0) = F_{\rm e}^2/m\omega^2 \sim 3 - 5 \;\mu {\rm eV}$$

$$H_{\rm c} = F_{\rm e} X \hat{n}$$

effective gate voltage:

$$V_{\rm g}(X) = V_{\rm g} - F_{\rm e}X$$

classical current blockade [Pistolesi, Labarthe, PRB '07]

quantum analog: Franck-Condon blockade [Koch, von Oppen, PRL '05] [Leturcq *et al.*, Nature Phys. '09]

addition of a single electron, $\Delta n = 1$:

- displacement $\Delta X = F_{\rm e}/m\omega^2$
- \blacktriangleright effective shift of gate voltage $\,\Delta V_{\rm g} = F_{\rm e}^2/m\omega^2$
- \blacktriangleright current blockade for $~V < \Delta V$

$$\Delta V(F=0) = F_{\rm e}^2/m\omega^2 \sim 3 - 5 \;\mu {\rm eV}$$

$$\Delta V(F \to F_c) = F_e^2 / m\omega^2 \to \infty$$

diverges at the Euler instability!

Enhanced current blockade

below instability

above instability

energy unit: $F_{
m e}^2/m\omega_0^2\sim\mu{
m eV}$

Enhanced current blockade

- gap increases sharply near F_c
- increase limited by anharmonic term
- relative increase stronger for weaker electromechanical coupling

- Coulomb diamond shifts in gate voltage
- small shift below instability
- orders of magnitude larger shift on buckled side

Enhanced current blockade

- \bullet gap increases sharply near F_c
- increase limited by anharmonic term
- relative increase stronger for weaker electromechanical coupling

- Coulomb diamond shifts in gate voltage
- small shift below instability
- orders of magnitude larger shift on buckled side

experiments on CNT: $\Delta V \simeq 5 \,\mathrm{meV}$

Thermal fluctuations

- gap observable as long as $T \ll \text{gap}$
- scaling law
- tuning system near instability enlarges temperature region

Full Langevin dynamics

current blockade more pronouced for:

- low Q
- slow oscillator

Nanoelectromechanical systems near mechanical instabilities:

- Euler instability as paradigm of mechanical instability
- Critical slowing down" makes problem inherently classical, and allows for asymptotically exact solution
- capacitive coupling (molecular quantum dot): strong enhancement of current blockade

[GW, F. von Oppen, F. Pistolesi, submitted to Phys. Rev. B (arXiv:1010.0800)]

intrinsic coupling (metallic quantum dot):
 discontinuous Euler instability

[GW, F. Pistolesi, E. Mariani, F. von Oppen, Phys. Rev. B 81, 121409(R) (2010)]

Discontinuous Euler instability

Discontinuous Euler instability

1

Discontinuous Euler instability

1

 $\epsilon \sim F - F_c$

Effect of offset charges

so far: N=0 $\hat{n}=0,1$

but gate voltage can be larger than charging energy $\, \Rightarrow N > 0$

 \clubsuit additional force $f_N \sim N \,$ that bends the tube further

$$V(X) = \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4 + F_{\rm e}f_NX$$

cf. symmetry-breaking field in Landau theory

• gap increase suppressed by offset charges

Effect of offset charges

so far: N=0 $\hat{n}=0,1$

but gate voltage can be larger than charging energy $\, \Rightarrow N > 0$

 \clubsuit additional force $f_N \sim N \,$ that bends the tube further

$$V(X) = \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4 + F_{\rm e}f_NX$$

cf. symmetry-breaking field in Landau theory

• gap increase suppressed by offset charges

experiments on CNT: $N \lesssim 10^3 \text{--} 10^4$