

When soft meets hard matter: from molecular monolayers to organic electronics

Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology, KIT North Campus

Organic Semiconductors making their way to applications

Fabrication using printing technology

Organic Field-Effect Transistor

(;

Insulator Organics "cheap electronics"

"Chips on a chips bag"

Siemens (2003)

- Polymers
 Oligomers with high solubility
 ("amorphous" OFET's)
- RFID-tags
- limited charge carrier mobility causes low frequencies

www.ofet.de

Organic Semiconductors: Charge Carrier Mobilities

<u>Oligomers:</u> - highly ordered, single crystals

- high purity

- main interest polycyclic aromatic hydrocarbons (Polyacenes, Benzoide)

Organic Conductors:

RT $\longrightarrow 1/T [10^{3} K^{1}]$ Clear evidence for band-like transport, at higher temperatures hopping transport

Electronic structure: Conventional vs. organic semiconductors

Hard vs. soft: Phonon frequencies

Electron-phonon coupling? Stress, strain ? Anisotropy?

Nucleation & growth on bottom contact OFET-structures

co-operation with Prof. Kunze, Chair for Nano-Electronics, RUB, Bochum

It is rather difficult to measure charge carrier mobilities in organic semiconductors

Would be good to have a model "ideal device"

Christof Wöll, KIT Karlsruhe Organic Electronics: Using SAMs for model devices

0

Fabrication of an "ideal" OSC-device

Work function changes at surfaces: The cushion effect

or

When hard meets soft matter

Ab-initio calculations for Xe/Cu(111): $\Delta \Phi = -1.0$ eV (work function is reduced!) Two mechanisms : Pauli Exclusion and Surface Response To Xe

P.S.Bagus, V.Staemmler, CW, Phys.Rev.Lett.88, 28301 (2002); G.Witte, S.Lukas, P.S Bagus, CW, Appl.Phys.Lett 87, 263502 (2005)

Adjusting the work-function of a metal

	Electropositive	Uncharged	Electronegative
	(e.g. Cs, Na,)	(e.g. Xe, alkanes,)	(e.g. I, Cl,)
	+ Metal	Metal	- Metal
Prediction	Workfunction decrease	No workfunction change	Workfunction increase
Thorough analysis	Substantial decrease	Substantial decrease	Small workfunction decrease for I (cov. dependant !) Pauli repulsion, electrostatics, polarization
(Experiment, ab-initio theory)	(Pauli repulsion + electrostatic)	(Pauli repulsion)	

P.S.Bagus, D.Käfer, G.Witte, CW, Phys.Rev.Lett. 100, 126101 (2008)

Growth of pentacene on metal substrates

Pentacene

- no π -stacking
- Bulk structure
- dewetting

G.Beernink, T.Strunskus, G.Witte, CW Appl. Phys. Lett. **85**, 398, (2004)

• More detailed studies: rather rule than exception in OMBD of aromatic molecules on metals

Principles of OMBD: Bulk properties

No orientational precursor for planar growth

-> Problems in coating of metals (bottom-contact problematic)

herring-bone motif, molecular axis normal to planes

Review Witte & Wöll *in: Journal Materials Research,* Focus Issue *Organic Electronics* J. Mater. Res. **19**, 1889, (2004)

Growth of pentacene on metal substrates

SAMs as model-systems for molecule-based interfaces

High structural perfection, limited only by substrate quality

Precise control of interface dipole possible

G.Heimel, L.Romaner, E.Zojer, J.Bredas Nano Letters **7**, 932, (2007)

Potential not yet fully exploited - insulator vs. OSC

Most organic molecules are suited for attaching a thiol anchor

When soft meets hard matter: the importance of a mediator

SAMs exhibit organic surfaces with a structural quality defined by the Au(111) substrate !

SAMs: Highly ordered molecular adlayers

Decane thiolate (27 eV)

Gold substrate

 $(2\sqrt{3}*\sqrt{3})R30^{\circ}$

Biphenyl-butane-thiolate (64 eV)

 $(2\sqrt{3*6})R30^{\circ}$

G. Pirug et al., FZ Jülich, FRG

Pentacene growth on modified Au(111)-surfaces

L.Ruppel, A.Birkner, G.Witte, C.Busse, T.Lindner, G.Paasch, CW, J.Appl.Phys. 102, 033708 (2007)

Fabrication of an "ideal" OSC-device

Current-Voltage characteristics of "diode"-setup

Log. plot onset values at noise level (3-10⁻⁴ nA)

A total of ~ 50 islands have been investigated

Current-Voltage characteristics of "diode"-setup

A total of ~ 50 islands have been investigated

Log. plot onset values at noise level (3.10⁻⁴ nA)

- asymmetric onset voltages
- thickness dependent onset voltages for positive sample bias
- onset voltage stays fixed for negative voltage

Our hypothesis: Space charge effects

High charge density below tip leads to formation of space charge limited (SCL) region

Child's law for
SCL-transport:
$$j = \frac{9}{8} \mu \varepsilon_r \varepsilon_0 \frac{U^2}{d^3}$$

Smaller electric field for thicker layers

explains dependence on film thickness d

Confirmed by experiments at low temperature (70K)

L.Ruppel, A.Birkner, G.Witte, C.Busse, T.Lindner, G.Paasch, CW, J.Appl.Phys. 102, 033708 (2007)

Analysis of numeric simulation

Only p-conduction -> true diode behavior (rectification)

Onset at pos. bias implies n-conduction, transport through CB (rarely observed for PC)

L.Ruppel, A.Birkner, G.Witte, C.Busse, T.Lindner, G.Paasch, CW, J.Appl.Phys.102, 033708 (2007)

Conclusions from "model" diode

- n-conduction possible for pentacene, not only p-conduction
- absence of n-conduction evidence for contaminations (e-traps)
- Strong evidence for band-like transport in pentacene (temperature-dep.)
- Determination of mobilities should be possible, numerical simulations underway (difficult)

n-conduction in pentacene ? - absent in most real devices

- n-conduction for OSC in the absence of charge traps (-OH at interface) Chua, Zaumseil, Chang, Ou, Ho, Sirringhaus, Friend, Nature 434, 194 (2005).
 - Crucial test: Introduce e-traps OH-groups at organic/metal interface

Modification of SAM-surface

Well-defined pentacene-layers grown on OH-terminated SAM

-2.5 V 0.05 nA

Stable STM imaging at negative bias

1 nm pentacene film on a OH-terminated SAMM: double layer of pentacene, rest single layer

Similar growth mode as on CH₃-terminated SAM

Pentacene deposited on OH-terminated SAM

Z.-H- Wang, D. Käfer, A. Bashir, J. Götzen, A. Birkner, G.Witte, CW PCCP, in print (2010), DOI: 10.1039/b924230a

Trapping of electrons at OH groups

Corresponding studies for alcohols in solvents:

 $e_{solv}^- + ROH \rightleftharpoons \{e^-:ROH\}_{solv} \rightarrow RO^- + H^*, H^*$ then reacts with solvent

I.Shkrob and M.Sauer, J.Phys.Chem.A 109, 5754 (2005)

OH-traps at organic-organic interface

Structural changes resulting from loading of OH-traps with e-

(+1.5V, 0.05 nA)

100 x 100 nm (+2.0V, 0.05 nA)

Indistinguishable from STM micrographs recorded before deposition

Irrevsible structural changes ?

No changes seen when imaging SAM surface after removal of pentacene

Strong evidence for reversible filling of OH trap states

Z.-H- Wang, D. Käfer, A. Bashir, J. Götzen, A. Birkner, G.Witte, CW PCCP, 12, 4317 (2010)

SAMs of HBC- C_3 thiol on Au(111)

60Å

5Å

Long columnar structure

Soft tether long range ordered of parallel lamella under the guidance of π - π stacking.

Organic Electronics: Using SAMs for model devices Christof Wöll, KIT Karlsruhe

SAMs of P-HBC thiol on Au(111) (measured in UHV)

HBC thiol: preparation conditions matter !

L. Piot, C. Marie, X. Dou, X. Feng, K. Müllen, D. Fichou, JACS 2009, **131**, 1378

Low degree of order, many defects

Our results after optimization of preparation conditions

Long-range ordering, low density of defects

Structural model of HBC modified thiol

Electron transport mechanism of HBC SAMs: Information from STM ?

Lateral conduction in HBC SAMs (insertion of HBC into C10SH-SAMs)

25 min insertion time

Christof Wöll, KIT Karlsruhe

Organic Electronics: Using SAMs for model devices

An OSC device based on SAMs?

 HBC-thiols form SAMs with long range order Plane tilted by around 40°

- Temperature dependence suggests tunneling transport between HBC and Au (R_{lat}) band-like transport parallel to the surface (i.e. within HBC monolayer)
- Hopping-transport parallel to surface not consistent with exp. data
- Evidence for intrinsic e-mobilities > 5 cm²/Vs

When soft meets hard matter: from molecular monolayers to organic electronics

Topics:

Organic electronics, OFETs Work function Electronic level alignment

Flat aromatic molecules grown on metal substrates

Using SAMs for substrate modification

Importance of model devices

SAM-based method to measure mobilities in OSCs

Collaborators: Dr. H. Gliemann T. Ladnorg

Dr. Alexander Birkner (Bochum) Dr. Daniel Käfer (Now Stanford) Dr. Asif Bashir (Now MPI Düsseldorf) Prof. Gregor Witte (now at Marburg Univ.) *Cooperations:* Prof. A.Terfort (Frankfurt)

Prof. G. Paasch (Dresden)

Prof. P.S. Bagus University of North Texas, USA

Prof. K. Müllen MPI Polymerforschung, Mainz

Physical and Chemical Aspects of Organic Electronics From Fundamentals to Functioning Devices

Summarizes the state-of-the-art of a topic that has been the focus of intense recent research...

- Covers the topic from the synthesis of appropriate materials to the testing of real devices.
- Special emphasis has been made on the difference between inorganic semiconductors such as Si, Ge and GaAs and organic semiconductors (OSC).
- Brings together experts from a variety of different fields who describe their approaches to organic electronics.

www.wiley-vch.de

